Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Infect Dis ; 128: 148-156, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2244274

ABSTRACT

OBJECTIVES: We performed a pilot study of upamostat, a serine protease inhibitor, in outpatients with symptomatic COVID-19 before a pivotal trial. METHODS: SARS-CoV-2 patients with ≥2 moderate-severe symptoms onset within 5 days were randomized to oral upamostat 200 or 400 mg or placebo daily for 14 days. Patients completed COVID-19 symptom questionnaires daily for 28 days, then thrice weekly for 4 weeks, and underwent physical and laboratory examinations periodically. RESULTS: A total of 61 patients enrolled of which 20 received a placebo or upamostat 200 mg daily; 21 received upamostat 400 mg daily. Treatment was well tolerated; only one patient (upamostat 400) reported a drug-related adverse event, mild skin rash; no patient discontinued owing to a drug-related adverse event. The median time to a sustained recovery from severe symptoms was 8, 4, and 3 days for the three treatment groups, respectively. New severe symptoms developed in 20% of the placebo group vs 2.4% in the combined upamostat groups, (P = 0.036). Three placebo patients (15%) versus no upamostat patients were hospitalized for worsening COVID (P= 0.03). The mean d-dimer level remained constant in placebo patients but decreased by 38% and 48% in upamostat 200 and 400 patients, respectively. CONCLUSION: Upamostat was well tolerated, shortened recovery time, and decreased new severe symptoms and hospitalization.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pilot Projects , Outpatients , Serine Proteinase Inhibitors , Treatment Outcome , Double-Blind Method
2.
Molecules ; 27(6)2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1753654

ABSTRACT

This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues of the core proteins intended to receive the D-xylose molecules to initiate the HS/CS chains). Essentially, the additional supporting facts, are: some anterior studies on the binding sites of exogenous heparin and soluble HS on the core proteins, the inhibition of the viral entry by pre-incubation of cells with heparin, and additionally, corroborating studies about the mechanism leading to type 2 diabetes during viral infection. We then discuss the mechanism by which serine protease inhibitors inhibit SARS-CoV-2 entry. The biosynthesis of heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (Hep) is initiated not only by D-xylose derived from uridine diphosphate (UDP)-xylose, but also bioactive D-xylose molecules, even in situations where cells were previously treated with GAG inhibitors. This property of D-xylose shown by previous anterior studies helped in the explanation of the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This explanation is completed here by a preliminary estimation of xyloside GAGs (HS/CS/DS/Hep) in the body, and with other previous studies helping to corroborate the mechanism by which the D-xylose exhibits its antiglycaemic properties and the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This paper also discusses the confirmatory studies of regarding the correlation between D-xylose and COVID-19 severity.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Heparin/metabolism , Heparin/pharmacology , Heparitin Sulfate/metabolism , Humans , SARS-CoV-2 , Serine Proteinase Inhibitors
3.
J Virol ; 95(19): e0086121, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1486519

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. No effective treatment for COVID-19 has been established yet. The serine protease transmembrane protease serine 2 (TMPRSS2) is essential for viral spread and pathogenicity by facilitating the entry of SARS-CoV-2 into host cells. The protease inhibitor camostat, an anticoagulant used in the clinic, has potential anti-inflammatory and antiviral activities against COVID-19. However, the potential mechanisms of viral resistance and antiviral activity of camostat are unclear. Herein, we demonstrate high inhibitory potencies of camostat for a panel of serine proteases, indicating that camostat is a broad-spectrum inhibitor of serine proteases. In addition, we determined the crystal structure of camostat in complex with a serine protease (uPA [urokinase-type plasminogen activator]), which reveals that camostat is inserted in the S1 pocket of uPA but is hydrolyzed by uPA, and the cleaved camostat covalently binds to Ser195. We also generated a homology model of the structure of the TMPRSS2 serine protease domain. The model shows that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2, subsequently preventing SARS-CoV-2 spread. IMPORTANCE Serine proteases are a large family of enzymes critical for multiple physiological processes and proven diagnostic and therapeutic targets in several clinical indications. The serine protease transmembrane protease serine 2 (TMPRSS2) was recently found to mediate SARS-CoV-2 entry into the host. Camostat mesylate (FOY 305), a serine protease inhibitor active against TMPRSS2 and used for the treatment of oral squamous cell carcinoma and chronic pancreatitis, inhibits SARS-CoV-2 infection of human lung cells. However, the direct inhibition mechanism of camostat mesylate for TMPRSS2 is unclear. Herein, we demonstrate that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2 as uPA, subsequently preventing SARS-CoV-2 spread.


Subject(s)
Antiviral Agents/pharmacology , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Serine Endopeptidases/pharmacology , Serine Proteases/pharmacology , Antiviral Agents/chemistry , COVID-19/prevention & control , Carcinoma, Squamous Cell , Esters/chemistry , Esters/metabolism , Guanidines/chemistry , Guanidines/metabolism , Humans , Molecular Dynamics Simulation , Mouth Neoplasms , Protein Domains , Sequence Alignment , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Proteases/chemistry , Serine Proteases/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Virus Internalization/drug effects , COVID-19 Drug Treatment
4.
J Clin Med ; 10(10)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234756

ABSTRACT

Severe coronavirus disease 2019 causes multi-organ dysfunction with significant morbidity and mortality. Mounting evidence implicates maladaptive over-activation of innate immune pathways such as the complement cascade as well as endothelial dysfunction as significant contributors to disease progression. We review the complement pathways, the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on these pathways, and promising therapeutic targets in clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL